Conharmonic Curvature Tensor on -Contact Metric Manifolds

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gray Curvature Identities for Almost Contact Metric Manifolds

The aim of this research is the study of Gray curvature identities, introduced by Alfred Gray in [7] for the class of almost hermitian manifolds. As known till now, there is no equivalent for the class of almost contact manifolds. For this purpose we use the Boohby-Wang fibration and the warped manifolds construction in order to establish which identities could be satisfied by an almost contact...

متن کامل

On - Curvature Tensor in Lp-sasakian Manifolds

Some results on the properties of T -flat, quasiT -flat,  T -flat,  T -flat, T -semi-symmetric,  T Ricci recurrent and T - -recurrent LP-Sasakian manifolds are obtained. It is also proved that an LP-Sasakian manifold satisfying the condition T . 0 S  is an  -Einstein manifold. MSC 2000. 53C15, 53C25, 53C50, 53D15.

متن کامل

On Contact Metric R-Harmonic Manifolds

In this paper we consider contact metric R-harmonic manifolds M with ξ belonging to (κ, μ)-nullity distribution. In this context we have κ ≤ 1. If κ < 1, then M is either locally isometric to the product E × S(4), or locally isometric to E(2) (the group of the rigid motions of the Euclidean 2-space). If κ = 1, then M is an Einstein-Sasakian manifold. Mathematics Subject Classification: 53C05, 5...

متن کامل

Conservative Projective Curvature Tensor On Trans-sasakian Manifolds With Respect To Semi-symmetric Metric Connection

We obtain results on the vanishing of divergence of Riemannian and Projective curvature tensors with respect to semi-symmetric metric connection on a trans-Sasakian manifold under the condition φ(gradα) = (n− 2)gradβ.

متن کامل

Symmetries of Contact Metric Manifolds

We study the Lie algebra of infinitesimal isometries on compact Sasakian and K–contact manifolds. On a Sasakian manifold which is not a space form or 3– Sasakian, every Killing vector field is an infinitesimal automorphism of the Sasakian structure. For a manifold with K–contact structure, we prove that there exists a Killing vector field of constant length which is not an infinitesimal automor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ISRN Geometry

سال: 2011

ISSN: 2090-6307,2090-6315

DOI: 10.5402/2011/423798